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Abstract

We present a method for utilizing weakly supervised data
for action localization in videos. We focus on sports video
analysis, where videos contain scenes of multiple people.
Weak supervision gathered from sports website is provided
in the form of an action taking place in a video clip, with-
out specification of the person performing the action. Since
many frames of a clip can be ambiguous, a novel temporal
attention approach is designed to select the most distinctive
frames in which to apply the weak supervision. Empirical
results demonstrate that leveraging weak supervision can
build upon purely supervised localization methods, and uti-
lizing temporal attention further improves localization ac-
curacy.

1. Introduction

In this paper we present an approach for utilizing weakly
supervised data to learn models for action localization in
sports videos. Action localization is a core problem in video
analysis – determining which person in a scene is perform-
ing an action of interest. Within the context of sports video
analysis, the problem is particularly challenging. Sports
scenes typically consist of multiple, interacting people. The
visual appearance of people is similar because of team uni-
forms. Inter-person occlusion is prevalent.

However, sports videos often come with a great amount
of data in corresponding media. While much of these data
are only weak supervision for action localization. For ex-
ample, there exists a large amount of ’play-by-play’ about
sports videos from corresponding websites, itemizing se-
quentially the events happened in a game. There are chal-
lenges in utilizing these meta-data for training action local-
ization methods. First, the labels are weak, scene-level la-
bels. In sports scenes there are multiple people present, and
we need to disambiguate which person the label should ap-
ply to.

A second important challenge is about temporal infor-
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Figure 1: When trying to localize the player of a certain
action with weak supervision, it is important to focus on
the stereotypical poses that are easier to learn. Many of
the player poses in the frames look similar. However, in
the bottom two frames, the player taking the shot takes a
distinctive pose. Our method uses an attention model to
focus on the distinctive poses for learning an action model.

mation in labeling. Consider the example in Fig. 1. Not all
moments in an action are equally distinctive. As an exam-
ple, consider the basketball action labels of layup and dunk.
Video clips with these labels may share a lot of similarity,
with a player dribbling toward the basket surrounded by de-
fenders. Determining which moments in time are more dis-
tinctive can help train better quality classifiers.

Our approach to address these challenges is to develop a
weakly supervised deep learning model for action localiza-
tion. Fully supervised training data, specifying the bound-
ing boxes of people performing actions, is expensive to ac-
quire. We propose a novel attention model-based loss func-
tion that is used to find the frames that are indicative of an
action in weakly supervised data. As an example, we show
a method for collecting and utilizing information from bas-
ketball videos and corresponding box score annotations that



specify the events that took place during the game. These
annotations are plentiful, but are imprecise in time and do
not contain spatial annotation. We show that using these
weakly supervised data is effective. They can be used in
conjunction with a small amount supervised data to improve
the quality of action localization, showing that a little bit of
supervision can go a long way toward producing accurate
action localization.

2. Related Work
We develop a method for utilizing attention models for

weakly supervised learning of action localization in videos.
Below, we review closely related work in these areas.

Action localization: A variety of methods exist for an-
alyzing videos according to human action labels. These
methods range from video-level classification on uncon-
strained Internet video, to methods that spatio-temporally
localize human actions. In concert with improvements in
deep learning for object recognition, state of the art methods
utilize deep learning approaches to learn convolutional fea-
tures. In action recognition, the dense trajectories of Wang
et al. [26], the best hand-crafted features, have achieved im-
pressive performance on many tasks. However, these have
yielded to deep learning approaches. In video-level action
recognition, Simonyan and Zisserman [21] presented a two-
stream convolutional architecture for merging image and
optical flow data as input sources. Zha et al. [31] com-
pute deep learned image-based features for each frame, and
study strategies for aggregation, obtaining impressive re-
sults on TRECVID MED retrieval. Karpathy et al. [6] and
Tran et al. [24] learn spatio-temporal filters in a deep net-
work.

Temporal localization of actions has a long history in the
computer vision literature. Seminal work includes Yamato
et al. [29], who model actions using hidden Markov mod-
els (HMMs). A more recent example in this vein is Tang et
al. [23], who extend HMMs to model the duration of each
hidden state in addition to the transition parameters of hid-
den states. Discriminative models include those based on
key poses and action grammars [13, 25, 15].

In our work we predict spatial action localizations. Clas-
sic methods include Ke et al. [7] who match templates of
action to crowded video scenes. Lan et al. [8] jointly detect
and recognize actions in videos based on a figure-centric
visual word representation. Recent work has switched to-
ward methods based on analyzing action tube proposals.
Gkioxari and Malik [3] train SVMs for actions on top of
deep learned features, and further link them in time for
spatio-temporal action detection. A set of approaches have
built in this direction, improving methods for producing
frame-level action proposals, linking, and analyzing them
to produce action labels [27, 14, 19].

Weakly-supervised learning: The prevalence of par-

tially annotated data for computer vision tasks has inspired
a swath of research. This includes methods for object
and action recognition. Fundamental work for the problem
of action recognition was done by Laptev et al. [9], who
built datasets for action recognition by considering surro-
gate movie script data. Rohrbach et al. [18] find correspond-
ing regions to each object that appear as a phrase in the
sentence description. Jayaraman et al. [5] learn represen-
tations based on assumptions regarding changes in neigh-
bouring video frames. Shah et al. [20] build a genera-
tive model of video events. Ma et al. [11] extracts hier-
achical space time segments from videos without super-
vision and uses them for action recognition and localiza-
tion. Mosabbeb et al. [12] proposes a matrix completion
approach for weakly-supervised action recognition and lo-
calization. Siva et al. [22] presents a MIL algorithm that lo-
cates the action of interest spatially and temporally by glob-
ally optimising both inter- and intra-class distance.

Bojanowski et al. [1] explore joint localization of people
and actions in movie clips. The problem setting is similar to
ours where only video-level description is provided. They
model the problem as assigning zero-one values to latent
indicators under the constraint that paired actions and ac-
tors correspond to the same instance in the frame. In follow
up work [2], temporal localization of an ordered set of de-
scriptions corresponding to a video clip is done. A mapping
is learned between text representation and image presenta-
tion and an allocation assigning frames to descriptions at the
same time. Our problem and approach differ in that we take
into consideration actions that are not described explicitly
and conduct inference in a multi-person sports setting. Lu
et al. [10] examine the problem of identifying all the players
in a basketball game. A graphical model is built on top of
player tracks to identify players. Although they take advan-
tage of labeled player identities, they also add results from a
supervised model into training, leading to a semi-supervised
approach.

Attention models: Pioneering work on computational
spatial attention models for images was done by Itti et
al. [4]. Recently, such models have garnered attention for
their ability to focus computational and modeling resources
toward important image/video elements.

This can take many forms. One simple idea is to score
a set of previously processed candidates e.g. simple dense
overlapping regions or those based on objectness. An ex-
ample for image captioning is the work of Xu et al. [28]
where an attention model is added into a image captioner so
that it will look at different parts of the image as it produces
the output sentence. For video data, Yao et al. [30] develop
an LSTM for video caption generation with soft temporal
attention.

There is also previous work in using attention models
to decide the key player in sports video. Ramanathan et



al. [16] propose a network to classify several actions in bas-
ketball videos. With the attention model, the action of the
key player is paid special attention when making a predic-
tion for a scene. Different from this work, we directly learn
to perform action localization, and our attention model is
utilized for training a weakly-supervised system rather than
part of a frame-level predictor.

3. Method
We start by introducing a basic form of our weakly-

supervised model where only clip-level supervision is pro-
vided. The training data are a set of sports video clips, each
with a label specifying the key action being performed by a
player. We will learn a model to localize these key actions,
by finding the people performing similar, distinct actions
within frames of the same action category. In such a strict
weakly-supervised setting, the model will face a lot of chal-
lenges from intra-class variation and noise in the training
data. These issues are tackled by our extension to the base
model with semi-supervision as well as a temporal attention
mechanism.

3.1. Weakly-supervised Action Localization

For each frame in a clip, we have weak supervision – es-
sentially, we know that there exists a person in each frame
of this clip who is (at some point in time) performing the
specified action. We first run a player detector to obtain the
top K person detections {xi}Ki=1 in each frame. All the de-
tections are sent to the same deep network for action classi-
fication. The categories consist of all the action classes plus
a background class. In a conventional supervised case the
training of a classifier will also take in the action labels ai.
Action models could be trained using standard approaches,
such as negative log-likelihood loss:

loss(xi, af ) = − log(softmax(CNNa(xi, af ))) (1)

where CNNa(xi, af ) represents the predicted score for ac-
tion class af when feeding detection xi into network, with
a softmax for normalizing scores across categories.

In the weakly-supervised setting, no such instance-level
action annotation is provided; action label assignments
should be inferred within the training process. Since we are
looking for the specific player performing the given action,
only one player should score high in the given action cate-
gory, while all other players should not. Moreover, the other
players should score high in the background class instead.

We formulate this new weakly-supervised loss as fol-
lows. For a frame f , if we denote its corresponding
(weakly-supervised) action class by af , the loss function
takes the form:

F =
∑
f

min
i
{loss(xi, af ) +

∑
j 6=i

loss(xj , bg)} (2)

where loss(xi, af ) is the loss of the i-th detection for action
class af , and loss(xj , bg) is the loss of the j-th detection for
the background class. To compute error gradients for back-
propagation, we first must infer which person in a scene
should be assigned as performing the action. Specifically,
for each frame in stochastic gradient descent we conduct
inference based on the current network weights. We assign
one player with the frame action label and the rest with the
background label so that the sum of the above losses is min-
imized. This assignment is used in calculating gradients for
back-propagation. This inference is computationally effi-
cient since the assignment can be done via a simple linear
search.

Note that in this learning objective, the background sam-
ples are equally important as the action samples. The back-
ground samples are abundant and provide reliable informa-
tion about what the given action should not be like. This
is important in the weakly-supervised setting and especially
for categories with fewer examples. It may be hard to char-
acterize such actions directly by looking for distinctive ac-
tions shared within the class, because any slight variation
will result in a big challenge with limited examples. But
the examples of the background class are shared across all
categories and serve as a essential clue to find the real target
action.

3.2. Semi-supervised Action Localization

The purely weakly-supervised method presents a very
challenging learning problem. We have the appearance of
each player in a number of frames of each action category
and need to determine which player is the “correct” one in
each frame. This problem is susceptible to model drift – if
we believe erroneously that certain similar-posed people in
many frames correspond to the “correct” action, the model
will reinforce this belief and learn an incorrect model. In
essence, the weakly-supervised localization above is sensi-
tive to initialization and unfortunate co-occurrences among
background poses.

This can be remedied by adding a small portion of super-
vision to guide the initial model to choose appropriate per-
sons in each frame as corresponding to the action category.
We utilize a similar formulation for the semi-supervised
case as in the weakly-supervised one. The loss function is
the same, except that for a small portion of the frames, the
loss simply uses standard supervised loss:

F =
∑
f∈S
{loss(xf

i∗ , af ) +
∑
j 6=i∗

loss(xf
j , bg)}

+
∑
f∈W

min
i
{loss(xf

i , af ) +
∑
j 6=i

loss(xf
j , bg)}

(3)

where xf
i∗ is the ground truth detection for the specified ac-

tion class in frame f , S is the collection of frames with full
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Figure 2: Shown above is the network structure for weakly-supervised action localization. The top detections from a player detector (Faster-RCNN) are
fed into identical action classifier networks. This generates action scores for all action classes, plus the background category. For each frame, one detection
should be classified into the action class of the frame. The remaining detections should be classified as background. In the weakly supervised setting, the
player performing the action is not given at training time and has to be inferred during learning. In a semi-supervised setting, a portion of the frames come
with full labeling including which player performs the action.
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Figure 3: An illustration for the intuition behind the temporal attention model. The stereotypical action poses are very distinct from the background
players and are shared by almost all clips of certain actions. Focusing on such core poses would lay a good foundation for the model to understand less
distinctive cases.

ground truth supervision, and W contains the remainder of
the frames.

3.3. Localization with Temporal Attention

The intuition behind weakly-supervised localization is
the assumption that different players take similar poses
when performing the same action. This is mostly true for
the key moments of each action – for instance, shots, dunks,
layups, etc. each contain moments of similarity within each
category. However, the temporal definition of actions are
vague, precise supervision is impractical, and it is unlikely
that the training clips contain only those key moments. This
leaves a number of frames where the target player pose
varies greatly, due to the variability in actions before/after
the key moments.

This might not be a problem in the supervised setting
where positive examples are abundant. The ambiguous
or improperly labeled data could be overcome with quan-
tities of correctly labeled positive data. For the weakly-
supervised or semi-supervised case, this problem is much
harder. In a frame where none of the players has the de-
sired pose, if the model has to choose one of the detections
as a positive example of a certain action class, it will likely
significantly harm performance.

To alleviate such problems, we introduce the following
temporal attention model. The attention model encourages
the localization network to put more emphasis on the eas-

ily recognizable or distinguishable examples by assigning
a weight to the loss of every frame. During training, the
attention model will learn to assign low weights to frames
incurring high error. Since stereotypical action poses are
easier to distinguish, this should focus training on more ap-
propriate examples.

The attention value is computed for each frame, and then
normalized over each clip with a softmax. The attention
value is computed from holistic frame-level features and
the responses of all action classifiers from all players. A
multi-layer perceptron takes both inputs to generate the fi-
nal attention value, using the loss function:

F =
∑
f∈S

wf · [loss(xf
i∗ , af ) +

∑
j 6=i∗

loss(xf
j , bg)]

+
∑
f∈W

wf · [min
i
{loss(xf

i , af ) +
∑
j 6=i

loss(xf
j , bg)}]

(4)

where wf is the attention of f -th frame, given by

wf = softmax(φ(ff , rf )) (5)

ff = CNNf (If ) (6)

rf = [CNNa(x1, a1),CNNa(x1, a2), . . . ,

CNNa(x2, a1), . . . ,CNNa(xK , aN )]
(7)

where ff is the holistic frame-level feature generated from
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Figure 4: Shown above is the temporal model structure. On top of the base model, a frame feature extraction network is introduced. Both frame feature
and action scores are sent to the temporal networks and generate a weight for the frame indicating its importance in the training.

CNNf , a frame-level network jointly trained with the local-
ization model, rf is the responses of all action classifiers for
all players in the frame and φ is a multi-layer perceptron.

In summary, our approach learns an action model by
utilizing fully and weakly-labeled data. For the weakly-
labeled data, we define a loss function that selects the high-
est scoring person in each frame according to the specified
action category, balanced against background labels for all
other people. Further, an attention model is applied to each
video clip, allowing the model to focus on the most distinc-
tive poses for each category.

4. Experiments
We conduct experiments on action grounding in sports

video. We collect a novel dataset, mining structured text de-
scriptions of basketball games along with associated video
footage. Experiments evaluate the effectiveness of our
method in a semi-supervised setting, and verify the effec-
tiveness of the attention model.

Dataset: We collected a new dataset to test our action
grounding system. The training set contains 746 clips from
13 NBA basketball games; a separate test set has 398 clips
from 6 games. Clips are extracted according to correspond-
ing play-by-play descriptions from espn.com. Each clip is
one second long and covers the action described in the play-
by-play. All clips are actions performed by a player of the
Golden State Warriors. We sample 9 frames from each clip,
for a total of 6714 frames in the training set and 3582 in
the testing set. The clips fall into 5 categories: free-throw,
layup, dunk, two-point and three-point. The label assign-
ment is purely according to the play-by-play description
with no manual adjustment. We will release the data an-
notations to enable comparisons.

Pre-processing: We train a player detector using the
Faster-RCNN network[17] on the NCAA dataset [16]. Note
that the camera angle and resolution of NCAA games differ

from that of NBA games, leading to some erroneous detec-
tions. Frames of 40 NCAA games are used in training the
detector. We run the detector over on our dataset and take
the top 10 detections, resized to 256 × 256, as the input to
our localization network.

Semi-supervision: Our experiments are done in a semi-
supervised setting where the grounding label (key player lo-
cation) of a small subset is provided in training. For frames
without a detection whose IoU with ground-truth is greater
than 0.5, the loss function will take all candidates as back-
ground examples. In the experiments below, number of su-
pervision means the number of clips per action category
whose grounding labels are provided in training. Up to 5 su-
pervised clips per category (225 frames in total) are used in
the experiments. Since the choice of fully supervised clips
influences the performance, we run all experiments for 5 re-
peats with different fully supervised clips, reporting mean
and standard deviation.

Network structure details: The action classification
and frame feature networks both use the Alexnet structure.
The input to the temporal attention model are the fc7 layer
of the frame network and the fc8 layer of the localiza-
tion network. In the attention model, both inputs are first
each sent to a fully connected layer resulting in vectors of
the same dimension. The two vectors are added, fed into
two fully connected layers to produce a scalar before being
normalized across frames from the same clip. The frame
network is initialized from the Caffe ImageNet pre-trained
model. For the action localization network, we pre-train on
our fully supervised data for 1000 iterations and then fine-
tune on the whole dataset in the semi-supervised setting.
All models are trained with a learning rate of 0.001, with 27
frame mini-batches (3 clips).

Evaluation: We annotate the ground truth bounding
boxes for frames where the player performing the action
is visible. These bounding box annotations are independent



Model Supervised Only Semi-Supervised Semi-Supervised with Attention
#supervision 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
free-throw 0.541 0.773 0.837 0.895 0.912 0.635 0.940 0.942 0.949 0.948 0.756 0.942 0.943 0.944 0.944

dunk 0.231 0.356 0.397 0.448 0.497 0.167 0.422 0.533 0.547 0.654 0.207 0.516 0.571 0.612 0.646
layup 0.213 0.273 0.313 0.375 0.407 0.200 0.402 0.472 0.521 0.579 0.275 0.510 0.535 0.563 0.582

two-point 0.214 0.260 0.331 0.385 0.406 0.218 0.405 0.477 0.523 0.585 0.305 0.529 0.574 0.598 0.609
three-point 0.216 0.333 0.364 0.416 0.437 0.256 0.444 0.525 0.616 0.659 0.261 0.565 0.618 0.656 0.673

overall 0.268 0.378 0.426 0.481 0.504 0.297 0.508 0.573 0.630 0.675 0.353 0.607 0.646 0.673 0.687
overall std 0.059 0.030 0.010 0.025 0.020 0.132 0.122 0.140 0.093 0.003 0.125 0.048 0.031 0.018 0.015

Table 1: Action grounding accuracy for all models on transductive set with different number of supervision. Both semi-supervised model and semi-
supervised with attention model outperforms their initialization model trained on only on supervised data, successfully extracting information from weakly-
supervised data. Semi-supervised models with attention demonstrate best performance among all models in both grounding accuracy and stability.

Model Supervised Only Semi-Supervised Semi-Supervised with Attention
#supervision 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
free-throw 0.644 0.857 0.939 0.966 0.958 0.616 0.986 0.985 0.988 0.988 0.799 0.986 0.987 0.987 0.986

dunk 0.356 0.422 0.554 0.585 0.605 0.320 0.573 0.713 0.728 0.802 0.405 0.764 0.771 0.791 0.795
layup 0.229 0.306 0.366 0.409 0.464 0.277 0.509 0.593 0.630 0.667 0.330 0.630 0.659 0.677 0.674

two-point 0.295 0.367 0.445 0.522 0.543 0.321 0.539 0.627 0.683 0.748 0.417 0.710 0.729 0.742 0.742
three-point 0.284 0.431 0.453 0.524 0.545 0.380 0.570 0.630 0.723 0.797 0.399 0.756 0.774 0.788 0.786

overall 0.384 0.517 0.579 0.636 0.652 0.415 0.670 0.727 0.775 0.822 0.508 0.793 0.807 0.818 0.817
overall std 0.065 0.058 0.028 0.024 0.026 0.192 0.124 0.135 0.082 0.005 0.168 0.022 0.011 0.003 0.002

Table 2: Action grounding accuracy for all models on inductive set with different number of supervision. Conclusions drawn from transductive set still
applies with no obvious over-fitting.

of the candidate bounding boxes from the automated player
detector. We follow the previously constructed loss function
to find the target player, specifically, we take the candidate
detection x∗i as the prediction from the model, where i∗ is
defined by

i∗ = argmin
i
{loss(xf

i , af ) +
∑
j 6=i

loss(xf
j , bg)} (8)

During testing, we ignore frames where the desired target is
not visible. For the rest of the frames, if the highest score
candidate x∗i in the frame has an IoU greater than 0.5 with
the ground truth box we take it as correct. Since we provide
localization labels for only a small portion of the training
data (up to 225 frames), we first test on the training data
where the instance labels are not provided (transductive set-
ting). In addition, the trained models are also tested on the
testing set whose frames are not used in the training phase
(inductive setting). All of the 225 frames that are poten-
tially used for supervision are excluded from test for fair
comparison.

4.1. Semi-supervised Localization

In the semi-supervised setting, we explore the influence
of the number of supervised examples. Supervision from 1
clip per action to a maximum of 5 clips per action is pro-
vided. To combat model drift, we “burn in” the network by
pre-training with only the fully-labeled data. The model is
first trained only on the supervised part for 1000 epochs and
later fine-tuned with all the data.

Results are presented in Tab. 1. The semi-supervised
models consistently outperform their fully-supervised
equivalents, demonstrating the utility of our weakly-
supervised approach.

4.2. Temporal Attention

The same settings are used for the temporal attention
model (1 to 5 fully labeled examples). Models are fine-
tuned for 30000 iterations from the fully-supervised model
trained on the supervised part only. Results in Tab. 1 indi-
cate that such temporal guidance is helpful in all cases for
both performance and stability, especially with little super-
vision provided. The larger performance gap at lower su-
pervision demonstrates the ability of the temporal attention
model to extract the right information from complicated and
challenging situations. As the amount of the amount super-
vision grows, advantages moderate but remain. The likely
reason is that when both model can easily distinguish the
easy targets with the help of more supervision, the gap be-
tween performance relies more on their ability to recognize
less distinguishable examples the attention model does not
explicitly emphasize. It is worth noting that the temporal at-
tention model does not over-fit on the easy examples, with
more supervision its performance also grows like the semi-
supervised model.

4.3. Inductive Test

We also present inductive results on new data not used
as weak supervision. The results in Tab. 2 demonstrates the
same conclusions as the transductive ones. Note that the



Model Supervised Only Semi-Supervised from Supervised Semi with Attn from Supervised
#supervision 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

action accuracy 0.326 0.384 0.421 0.482 0.493 0.603 0.659 0.664 0.692 0.703 0.623 0.707 0.714 0.711 0.720
bbox accuracy 0.393 0.495 0.562 0.624 0.633 0.402 0.649 0.709 0.763 0.812 0.496 0.784 0.798 0.808 0.810

overall accuracy 0.179 0.270 0.323 0.388 0.397 0.305 0.514 0.541 0.590 0.620 0.383 0.608 0.624 0.632 0.637

Table 3: Action grounding on inductive test with no frame label provided. Action labels(from five action category) and bounding box are infered
simultaneously. Bounding box accuracy is similar to results with frame label provided, indicating model’s ability to distinguish key player. Due to the
training procedure and confusion in the label set, the action accuracy is not as good.

clips in training transductive inductive
200 0.566 ±0.023 0.723 ±0.026
400 0.633 ±0.020 0.790 ±0.013

full dataset 0.687 ±0.015 0.817 ±0.002

Table 4: Grounding accuracy for semi-supervised different number of
clips used in traing, all with 5 clips per action category as supervision

higher performance (for all methods) is due to the higher
detection recall and higher percentage of (easier) free-throw
frames in the inductive test set.

In the experiments above, frame level labels are provided
to perform the grounding. We evaluate the ability of our
inference criterion to predict simultaneously the action class
as well as the bounding box as follows:

i∗, a∗f = argmin
i,af

{loss(xf
i , af ) +

∑
j 6=i

loss(xf
j , bg)} (9)

where af is chosen from the five action categories. Pre-
sented in Tab. 3 are: action accuracy measuring the per-
centage of frames where the action prediction is correct,
bounding box accuracy measuring the percentage of frames
where the predicted bounding box has an IoU over 0.5 with
groundtruth, and overall accuracy measuring the percentage
of frames where both the action and bounding box are cor-
rectly predicted. Results show that bonding box accuracy is
close to the grounding performance with frame labels pro-
vided, indicating the model’s ability to distinguish the key
player. The action accuracy is not as good since the model
is explicitly trained for such a task. Note that the two-point
classes are not carefully distinguished from the dunk and
layup classes in the play-by-play texts, leading to certain
confusion across categories.

4.4. Amount of Weakly-supervised Data

The advantage we expect from semi-supervised learn-
ing is its ability to learn from the weakly-supervised data.
It would be beneficial if the model’s performance can im-
prove by just taking in more weakly-supervised data which
is less demanding to collect. Here we test the model’s abil-
ity to utilize weakly-supervised data by training with 200
clips, 400 clips and all 746 clips, all with fully supervised
grounding labels for 5 clips per action category. The results
present in Tab. 4 indicate sustained improvement with more

#supervision 1 2 3 4 5
overall 0.238 0.278 0.316 0.337 0.354

overall std 0.103 0.071 0.041 0.021 0.026

Table 5: Overall grounding accuracy and std for models without back-
ground term in loss trained on the fully supervised data only with different
number of supervision.

weakly-labeled data, validating the potential from semi-
supervised learning.

4.5. Background Class in the Loss Function

One observation we take advantage of when proposing
the approach is that only one of the players should be per-
forming the labeled action while others should be perform-
ing none of the possible actions. In comparison, conven-
tional multiple instance learning methodology would use a
weaker assumption that at least one of the players is per-
forming the target action.

We evaluate the effect of the background model. Tab. 5
shows results of a fully-supervised model without the back-
ground term in the loss function (c.f. Tab. 2 left); semi-
supervised models fail to learn in this setting. The reduced
performance is likely due to the lack of use of background
examples in correcting weak supervision, combating data
noise, and shaping the decision boundary with positive ex-
amples.

5. Conclusion
We demonstrated that attention models can be used to se-

lect distinctive frames for learning action localization from
weakly supervised data. We created a dataset of weakly
supervised action data by combining basketball video data
with action labels extracted from text descriptions of the
games. The weak supervision lacks spatial and precise tem-
poral localization of action, but our model is capable of
overcoming these challenges.

Our experiments explored the use of weakly supervised
action data in isolation. Further, the weakly supervised data
was used to augment a fully supervised dataset to improve
action localization results. Ablation studies showed that
the attention model and learned weak supervision are effec-
tive means of increasing action localization performance.
Further study demonstrates the effectiveness of the semi-
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supervised
only

semi-
supervised

semi-
supervised
attention

Table 6: Visualization of player detection from different models. Blue box is the ground truth and red box is the highest score
candidate. Adding semi-supervision and temporal attention allows the model to extend knowledge from supervised examples
to the whole dataset and recognize distinctive moments that vary from the limited cases from supervising clips.

Attention 0.108 0.078 0.145 0.141

Frame

Attention 0.078 0.108 0.151 0.154

Frame

Attention 0.059 0.133 0.172 0.078

Frame

Attention 0.167 0.170 0.091 0.088

Frame

Table 7: Visulization of attention values for frames. Blue box is the ground truth and red box is the highest score candidate. 4
frames from each clip are shown with their frame attention value on top. The attention scores demonstrate the model’s ability
to attend to distinctive moments. The last row also indicates that low attention values are assigned to cases where the model
is confused, which helps the model to be robust to uncertainty in the training process.

supervised approach to extract information from weakly-
supervised data.
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