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Abstract. Human action categories exhibit significant intra-class vari-
ation. Changes in viewpoint, human appearance, and the temporal evo-
lution of an action confound recognition algorithms. In order to address
this, we present an approach to discover action primitives, sub-categories
of action classes, that allow us to model this intra-class variation. We
learn action primitives and their interrelations in a multi-level spatio-
temporal model for action recognition. Action primitives are discovered
via a data-driven clustering approach that focuses on repeatable, discrim-
inative sub-categories. Higher-level interactions between action primi-
tives and the actions of a set of people present in a scene are learned.
Empirical results demonstrate that these action primitives can be effec-
tively localized, and using them to model action classes improves action
recognition performance on challenging datasets.

1 Introduction

In recent years, the understanding of complex video events has drawn increased
interest in the computer vision community. A complex video event usually in-
volves multiple inter-related people and contains rich spatio-temporal structures
at various granularities. Fig. 1 shows an example video event in a long-term care
facility. In terms of understanding this type of event, there is a variety of ques-
tions one can ask: Is there a fall in the scene? Where is the fallen person? When
and how did the person fall? Are there any people coming to help? These poten-
tial queries often involve multiple levels of details ranging from the overarching
event to the fine-grained details of individuals (where, when and how).

In this paper, we develop a novel framework for a complete understanding
of video events, including: event classification (e.g. fall in nursing home), ac-
tion recognition and localization (e.g. standing, squatting), fine-grained action
primitive discovery (e.g. pushing a wheelchair, squatting and facing right) and
spatio-temporal structure extraction (e.g. squatting beside a person who just fell
a few seconds ago).

Understanding complex video events is an extremely challenging problem. It
shares all of the difficulties of person detection and action recognition, in addition
to significant difficulties unique to event classification. The use of hierarchical
models integrating multiple semantics such as actions and/or social roles has
been shown to boost event classification performance in realistic videos [1-5].
Despite these successes, there are two important issues not well addressed -
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Fig. 1. A multi-level video event representation. In the left we show a sample video
frame and the goal is to decide whether it is a fall scene or not. We found several actions
(e.g. squatting, falling, standing, etc), and each action is recognized using fine-grained
action primitives as shown in the yellow rectangles (e.g. squat facing right, stand to
push wheelchair, etc). We jointly model the action primitives, actions and event, while
considering the spatio-temporal interactions between action primitives. The model for
describing the video frame is illustrated in the right side.

localizing the actions and interpreting their fine-grained appearance. The former,
usually achieved by generic person detectors (e.g. [6]), brings considerable input
noise to the higher-level models, while the latter prevents a deeper level event
understanding. We address these problems by modeling action primitives, which
contain fine-grained information that can not be captured by the basic action
categories.

Traditional human detectors are known to have difficulties in capturing the
wide range of appearance of human actions in realistic, unconstrained videos.
In this paper, we argue that the fine-grained action primitives are key to re-
solving appearance variations within the action categories. Considering the dif-
ficulties in obtaining such labelings, we advocate a weakly supervised setting
where the action categories are provided in training, and the action primitives
are automatically discovered from the training data. We propose a discrimi-
native spatio-temporal clustering algorithm to discover the action primitives.
The action primitives are then treated as mixture components in a latent SVM
framework, and refined during learning. Our method detects possibly multiple
person instances in each video frame and generates detailed fine-grained action
primitives for each instance.

Further, the action primitives naturally contain a rich set of spatial-temporal
relations. For example, as shown in Fig. 1, the action primitives: “losing balance”,
“lying on the floor” and “pushing wheelchair” are in strict temporal ordering and
form typical spatial patterns. These spatio-temporal relations are important to
distinguish between different events, such as fall and non-fall. Our model captures
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these relations, and allows flexible inference of different levels of semantics and
their dependencies in a video.

2 Previous Work

The literature on human activity recognition is extensive, and covers a large
number of aspects of the problem. A comprehensive review of the field was
done by Turaga et al. [7]. In this section we review a selection of closely related
research, focusing on spatial and temporal representations and action category
learning.

Representations for individuals: A variety of approaches has been devel-
oped for representing the action of an individual. Bag-of-words approaches based
on local features [8] form the basis for many systems. Recent approaches have
pushed toward using a higher-level representation, often by learning mid-level
patch representations. Kovashka and Grauman [9] consider higher-order relations
between visual words, discriminatively selecting important spatial arrangements.
Maji et al. [10] use poselet activations, the presence of mid-level body parts in-
dicative of a particular action. Jain et al. [11] learn mid-level discriminative
spatio-temporal patches in a data-driven fashion, not relying on poselet-type
body part labels.

Many approaches follow a similar vein, analyzing spatio-temporal data to
represent human actions in video. Wang et al. [12] track moving points densely
over subjects, leading to a dense trajectory feature capturing detailed motion of
entire subjects in a scene. Raptis et al. [13] build upon this direction, grouping
low-level trajectory-type features into mid-level parts via latent variables. Tian
et al. [14] extend the deformable part model to temporal data, modeling the
changes in spatio-temporal positions of body parts throughout a sequence. Ma
et al. [15] describe a novel multi-scale representation for a person over time, with
large and small-scale patches.

Spatio-temporal structures in action recognition: In our work we dis-
cover action primitives and model their spatio-temporal relations. Temporal
modeling of human actions in terms of lower-level primitives has a long his-
tory in computer vision research. The work by Yamato et al. [16] used hidden
Markov models (HMMs) and discovered temporal evolution of actions such as
tennis swings. Moore and Essa [17] built stochastic grammars to represent com-
ponents of actions. Bobick and Wilson [18] described state-based representations
of gestures. Bregler [19] discovered low-level primitives, again using HMMs, and
showed the ability to detect primitives such as states in a gait cycle.

Larger-scale structures, relating the actions of all the individuals in a scene,
have been studied previously. Medioni et al. [20] utilized the relative positions
and directions of movement of interacting objects such as vehicles and check-
points. A recent body of work has developed related techniques, trying to infer
interactions in video sequences and model arrangements of groups of people. Lan
et al. [1, 2] examine latent interaction models at levels of individual actions, social
roles, and group activities. Choi et al. [3] unify the problem of inferring activities
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with tracking individuals. Amer et al. [4] develop a model for multi-scale activity
analysis, using AND-OR graphs with efficient inference techniques. Ramanathan
et al. [5] learn social roles from weakly labeled data in complex internet videos.

Action localization: Localizing an action in space and time is likely a cru-
cial step in order to reason about group activities. Methods that perform explicit
spatio-temporal localization include Ke et al. [21], who develop segmentation-
based features for detecting actions in videos with complex, moving background
clutter. Klaser et al. [22] track individuals and build features for describing each
trajectory before final classification. Lan et al. [23] reason about tracking as a
latent variable, and select discriminative sub-regions of a video for classification.
Tran and Yuan [24] phrase localization as a regression problem, and learn a
structured output model for producing human action bounding boxes in video.
As mentioned above, Tian et al. [14] develop deformable part models, which can
localize actions spatio-temporally.

Sub-category recognition: A contribution of our work is developing an
algorithm for discovering action primitives, sub-categories of the original action
classes. In the action recognition literature, this problem has been largely unad-
dressed. Basic latent variable models have been used, typically modeling aspect
or appearance, such as the work of Yao and Fei-Fei [25]. Kitani et al. [26] use a
probabilistic latent variable model for discovering action categories. A local fea-
ture representation is used, latent action categories are learned over spatial and
temporal low-level features. Hoai and Zisserman [27] develop a discriminative
approach for sub-category discovery.

In the object recognition community, there exists related work on modeling
objects and their subcategories, for instance the work of Lan et al. [28], Gu and
Ren [29], and Todorovic and Ahuja [30]. We bridge this line of work to action
recognition and develop novel methods for spatio-temporal action sub-category
analysis.

3 Action Primitive Based Action Localization

Given a set of training videos with annotations of basic-level action categories
and bounding boxes in each frame, our goal is to discover the action primitives
and learn action detectors. Our approach is inspired by the recent success of
subcategory based object detection [28,29,31]. A standard pipeline of this line
of work is to first partition the examples of an object category into different
subcategories and then learn a multi-component object detector as a mixture of
subcategory models. The multi-component object models can handle the intra-
class variations and thus improve the object detection performance.

We adapt the multi-component object detectors to the video domain and
learn multi-component action detectors. Different from static images, actions in
the same video tend to have large correlations, especially when they are tempo-
rally close to each other. We propose a novel hierarchical discriminative cluster-
ing scheme, to discover action primitives from videos. These action primitives are
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Fig. 2. A general pipeline of our action primitive based action localization model.
Details are described in the text.

treated as mixture components in the object model, and further refined during
learning. An overview of our approach is illustrated in Fig. 2.

Now we introduce the discriminative action clustering algorithm. The algo-
rithm starts by clustering examples in each individual video and then gradually
merges consistent clusters from multiple videos. Next, we present each layer in
detail.

3.1 First Layer: Intra-Video Clustering

The first layer finds highly homogeneous action clusters for each video indepen-
dently. Action examples in a video naturally form into multiple spatio-temporal
clusters: examples within a small spatio-temporal volume tend to be consistent
in appearance. Based on this intuition, we define the similarity between examples
as an integration of appearance, spatial and temporal cues.

For the appearance similarity, we use a recently proposed exemplar-SVM
based metric [28]. An exemplar SVM detector is trained for each positive exam-
ple, and negative examples are randomly sampled from all video frames excluding
the regions correspond to person. We use HOG as the feature descriptor. For
each example, we run the detector on all other examples of the same action class
in the video. We consider the top K scoring detections. The appearance similar-
ity between a pair of examples i and j is defined as d(i, j) = s(I;, I;), where I;
denotes the indices of the examples which are selected as the top K firings by
the detector i. s measures how many times the detectors ¢ and j are fired on the
same window.

For the spatial similarity, we use the Euclidean distance between a pair of
examples. The temporal similarity is defined as the number of frames between
a pair of examples. We integrate these three similarities into the Medoid Shift
clustering framework [32].

Fig. 3 (a) shows a visualization of several example clusters. Note that, due to
our strategy of discriminative clustering and incorporating spatio-temporal rela-
tions between examples, most of the examples in the same cluster correspond to
the same person in neighboring frames and are highly consistent in appearance.
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Fig. 3. Sample clusters in each layer. The first layer clusters actions within the same
video. The second layer clusters actions in between videos. Finally, the third learns
strong action detectors for further processing. Please refer to the text for details.

3.2 Second Layer: Inter-Video Clustering

We have obtained a large collection of atomic clusters, where each cluster con-
tains highly consistent examples from the same video. The next step is to merge
consistent atomic clusters from different videos. This step also relies on the same
discriminative clustering scheme.

We train a linear SVM for each atomic cluster, where we use all examples
in the atomic cluster as positive examples, and negative examples are randomly
sampled from all video frames excluding the regions corresponding to a person.
Similar to the intra-video clustering scheme, we run the detectors on all other
examples of the same action class. Then we compute the affinity matrix, where
the (4,7) entry of the matrix denotes the appearance similarity d(i,j) (defined
in the previous section) between atomic clusters ¢ and j.

In this layer, we only use appearance cues to measure the similarity between
pairs of atomic clusters. Once we have the affinity matrix, we do another level
of clustering via the standard affinity propagation [33]. In this way, consistent
atomic clusters from different videos are merged into one cluster. These clusters
are used as our initial set of action primitives. Visualizations of example clusters
in the second layer are shown in Fig. 3 (b).
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3.3 Third Layer: Action Primitive Refining and Detector Training

The first two layers of our clustering framework automatically partition the
person instances in each action class into a set of action primitives that are
consistent in appearance, space and time. Now our goal is to train action detec-
tors that can simultaneously recognize the action and localize the person who is
performing the action. Modeling the action primitives that corresponds to the
subcategories of the original action class will significantly reduce the intra-class
variations and improve the detection performance. However, including noisy ac-
tion primitives can cause the detector to become unreliable and thus hurt the
action detection performance. In this work, we train the action detectors in the
latent SVM framework, which iteratively learn the action detectors and refine
the action primitives.

Object detector learning: We learn a multi-component action detector
based on the DPM mixture model [6], where the mixture components are ini-
tialized by the action primitives discovered through our multi-layer clustering
algorithm. We treat the action primitive labels as latent variables and allow
them to refine during the latent step. Note that in standard DPM framework,
the mixture components are initialized according to the examples’ aspect ratios.
However, the aspect ratio heuristic does not generalize well to a large number
of subcategories, and thus often fails to provide a good initialization.

Action primitive pruning: There is no guarantee that all of the action
primitive templates are discriminative. Weak templates can potentially put neg-
ative effects on detection results. We introduce a procedure to prune the tem-
plates that are not discriminative. We quantify this criterion with the average
precision measure of action detection. We compute a precision-recall curve for
each action primitive template; if its average precision is less than a threshold
(0.5), we remove it. We compute precision with all positive examples, and a sub-
set of 500 negative examples. The surviving action primitives are again used to
initialize the multi-component action detector.

In our experiments, we used two iterations, as most good action primitives
did not need more to converge (i.e. stop changing). We visualize the person
examples in several sample action primitives in Fig. 3 (c).

4 Multi-Level Event Model

Our goal is to learn an event model that jointly considers persons’ actions and
action primitives, as well as the spatio-temporal interactions between them. We
start with an example (Fig. 1) that illustrates modeling a fall event in a nurs-
ing home surveillance video. This scene includes a few actions like squat, fall
and stand. Each action is fine-grained, represented by a certain action primi-
tive, e.g. squat facing right, fall and sit on the floor, stand to push wheelchair,
etc. We believe recognizing these actions helps to determine the event label,
since it is common to find persons squatting, falling, standing, or running in a
fall scene. Furthermore, the spatio-temporal interactions between these persons
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could also provide valuable information. For example, “losing balance”, “falling
on the floor”, “squatting besides the fallen person” and “pushing wheelchair
toward the fallen person” are in strict temporal ordering and form typical spa-
tial patterns. We explicitly formulate spatio-temporal interactions in our model.
Note that the interactions are between action primitives, rather than basic action
categories. This is to remove ambiguity in generic actions — a fallen person sitting
on the floor is likely interacting with a person standing to push a wheelchair,
instead of a person standing still. Using action primitives enables us to discover
these fine-grained cues for better video understanding.

To use our model in video recognition tasks, we employ the follow pipeline.
During training, we have labeled frames where the event labels and action la-
bels are provided, and we discover action primitives as described in Section 3.
The frames are then represented by the multi-level event model, which is further
learned in a max-margin framework to recognize events. During testing, we are
given a test frame and we would like to decide the event label. We run our action
primitive detectors to obtain candidate person detections, and reason about the
event label from the detected actions, action primitives, spatio-temporal inter-
actions, as well as the learned event model. Next, in Section 4.1, we formulate
our multi-level event model. We then introduce the max-margin learning in Sec-
tion 4.2.

4.1 Formulation

We first describe the multi-level labeling. Each video frame x is associated with
an event label y € ), where ) is the set of all possible event labels. Each person
is associated with two labels: basic level action and action primitive. We use
‘H and Z to denote the sets of all possible action and action primitive labels,
respectively.

We encode three types of temporal information in our model: co-occurrence,
before and after. We say that an action co-occurs with a video frame if the action
takes place in the same temporal segment as that frame. Otherwise, the action
is before or after the video frame. In our experiments, we consider the actions
detected on that video frame as co-occurring. The before (or after) actions are
those detected at most 20 sampled frames! before (or after) the given frame.
We ignore the actions further away when modeling the current video frame. We
denote a type of temporal information as t € T, where ¢ equals to ¢, b and «a
representing co-occurrence, before and after, respectively.

To interpret x with the multi-level event representation, we find a candidate
person z! in each temporal segment ¢, and for each basic action category i € H,
where H is the set of action labels. In our experiments, the candidate person z! is
simply set as the highest responding detection for action ¢ in temporal segment
t. However, we could easily extend our model to perform latent search over a set
of candidate detections. Note that z! is also associated with an action primitive
label 2! € Z with Z denotes all possible action primitives.

! In the nursing home dataset, 20 sampled frames account for roughly 10 seconds.
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We now define the score of interpreting a video frame x with the multi-level
event representation as:

Fo(x,y) = Z Qyit " xf + Z ;Z;,z;,t ) [$§,$§‘7d$j] (1)
i€H teT i€EH,jEH LET '

where we use x! interchangeably to denote the feature extracted from the bound-
ing box of the person z!. In our model, we set z! as the scalar output of the
action primitive detector for computational efficiency. Besides, 6 = [{a}, {8}] are
the model parameters to be learned in the max-margin framework. We describe
in detail each component in Eq. 1 in the following.

Unary event-action potential «,, ;- x!: This potential captures the com-
patibility between the event y of the frame and each action i taking place in
a given temporal segment. o, ;+ is a scalar parameter that weights action ¢ in
temporal segment ¢ for event y — high weights indicate discriminative actions.

Pairwise action primitive potential B;—,zf,z;,t - [x§, 2%, d};]: This potential
captures the compatibility between the event and pairs of action primitives.
We fix the first person z§ to perform a co-occurring action since we target on
modeling the current video frame. The second person ! could be in any temporal
segment to interact with person z§. The term dﬁj is a spatial feature computed
based on the relative position and scale of person :c§ ’s bounding box w.r.t. person
x§’s bounding box. Note that dﬁj is with respect to the second person’s temporal
segment t, which could be co-occurrence, before or after. Details of the spatial
feature will be introduced in the following.

A straightforward way is to consider the interaction between every pair of
action primitives. However, the model will become intractable and including
irrelevant interactions will have negative effects on the event model. To handle
this problem, we only consider a sparse set of interactions, by removing action
primitive pairs that are infrequent (fewer than ten appearances) in the training
data. For each selected action primitive pair, we follow [28] to extract the spatial
feature. We start by fitting a two component Gaussian mixture model (GMM)
to (the bounding boxes of) the pairs of action primitives. The GMM helps us to
model various scale and spatial aspects of the action primitive pair. Moreover,
we can produce a hypothesis for a bounding box by conditioning the learned
GMM on the bounding box of a contextual person. We use the GMM output
as the spatial feature. Formally, df; is the GMM score for person z’s bounding
box conditioned on person z{’s bounding box, where the GMM is trained for the
action primitive pair (z¢, z;/)

Note that this pairwise potential accounts for spatio-temporal interactions
between action primitives. The parameter By,zf,z; . identifies discriminative spatio-

temporal interactions by assigning high weights.

4.2 Learning

We now describe how to learn the multi-level event model for video event recog-
nition. Given a set of labeled training video frames {x;,v;}Y,, we would like to
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train the model parameters 6 that tend to produce the correct event label for
a new test video frame. A natural way of learning the model is to adopt the
multi-class SVM formulation [34] as follows:

N
LA 9 .
Juin §||9H +;§i, st Fo(xi,y5) — Fo(xi,y) 21 =&, Yiy#y (2)

where & = {&}V, are the slack variables to allow soft margin, and X is a trade-
off parameter. The constraint enforces that scoring a video frame x; with the
ground-truth label y; is marginally larger than that with any other label y # ;.
The objective can be optimized using off-the-shelf solvers. In our experiments,

we use a cutting-plane based solver implemented by [35].

5 Experiments

The focus of this work is on analyzing complex video events at multiple lev-
els of granularity, including human actions and fine-grained primitives, spatio-
temporal relations among multiple people and over-arching scene-level events.
This type of structure widely exists in realistic multi-person scenes with rich
social interactions. We demonstrate the effectiveness our approach with a chal-
lenging real-word application: fall detection in long-term care facilities. We have
collected a large dataset of surveillance video footage from a nursing home facil-
ity — un-choreographed activity that contains substantial intra-class variation in
action categories, and a natural setting to verify the efficacy of modeling complex
activity structures.

5.1 Video Event Recognition

Understanding video events performed by multiple people has drawn lots of
attention recently. However, the standard benchmark datasets on multi-person
(group) activities (e.g. [36,4]) are usually limited to pedestrian activities, such
as walking together, talking, queueing, etc. In this work, we have collected a
new challenging dataset for understanding multi-person activities in surveil-
lance videos. Our dataset contains a diverse set of actions and primitives with
large intra-class variations and thus presents lots of challenges in action recog-
nition and localization. Focusing on the videos containing falls, this dataset
naturally contains a rich set of realistic social interactions that form interesting
spatio-temporal structures (e.g. squat beside a fallen person, lose balance, push
wheelchair towards a person, etc). In the following, we first introduce the details
of the dataset and experimental settings and then report the results.

Nursing Home Event Dataset: Our dataset consists of 125 video se-
quences (in total 8 hours) captured from fixed surveillance cameras mounted
in a variety of rooms of a nursing home, including dining rooms, living areas,
and corridors. Videos are recorded at 640 by 480 pixels at 24 frames per second.
See Fig. 4 for example frames from the dataset.



Learning Action Primitives for Multi-Level Video Event Understanding 11

Fig. 4. Nursing Home Event Dataset. Our dataset contains 125 video sequences with
six actions: walking, standing, sitting, bending, squatting, and falling. There are two
event labels including fall (shown in the first two rows) and non-fall (shown in the last
row). These video sequences are collected from a real-world nursing home surveillance
project.

Unary Unary+Pairwise
Model: DPM Primitive Spatial Temporal Full model
AP (in%): 62.5 66.1 68.1 68.4 68.6

Table 1. Video event recognition performance on the nursing home dataset.

We split the dataset by using 104 short video clips for training (3 mins on
average), and 21 relatively longer video clips for testing (8 mins on average).
We annotated a subset (34769 frames) of all the frames in the training videos.
Note that in this type of surveillance footage, it is common that there are no
persons (or only static persons) appearing in the camera view over a relatively
long period of time. Thus we skip annotating these frames. Our annotations
include bounding boxes around the true location of the people in each frame (in
the subset), action labels for each person, as well as the per-frame event labels.
We define six action classes: walking, standing, sitting, bending, squatting, and
falling, and two event classes: fall and non-fall. In order to remove redundancy,
we sample 1 in every 10 frames for evaluation.

Baselines: We have designed four baselines to compare with our full model.
The first DPM baseline runs DPM based action detectors [6], and detects ac-
tions for each video. The detection scores are then used in the unary model of
Eq. 1, disregarding the temporal term ¢t. Note that this method shares a similar
principle to Action Bank [37]. The second baseline is the same as the first, but
using the proposed action primitive detectors instead. We combine the action
primitive detectors with the unary model of Eq. 1, which results in a hierar-
chical structured (event and actions) model. This is an example of a standard
structured model for action recognition. The third spatial baseline uses the spa-
tial information only by disregarding the other temporal segments (i.e. setting
T = {c}). Finally, the last temporal baseline considers only the temporal infor-
mation by removing the spatial feature dﬁj from our full model. Note that the
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(d) Non-fall

Fig. 5. Visualizations of our result. We select four frames, and show the detected
actions in each frame. Each bounding box is marked by a color, which denotes the
predicted action class. We use green, red, purple, blue, yellow and cyan to represent
walking, standing, sitting, bending, squatting, and falling respectively. The actions
used in the before and after segments are listed in the left and right of the frame,
respectively. Our model captures the spatio-temporal interactions among these actions
to predict the event labels (as captioned below each frame): the first three frames are
all believed to be fall scenes with the last being non-fall.

spatial baseline, the temporal baseline, and our full method learn with both the
unary event-action potential and the pairwise action primitive potential.

For a fair comparison, we use the same solver for learning all these methods.
The trade-off parameter A in Eq. 2 is simply set as 1 for all experiments. The
recognition performance is measured by average precision (AP) of fall detection.

Results: The results are listed in Table 1. We first compare the two baselines
using unary models only. The action primitive based baseline outperforms the
DPM based method. This validates the usage of our learned action primitives.
Furthermore, adding the pairwise model to the unary model improves the overall
recognition performance. Specifically, our full model outperforms all other base-
line methods including the temporal model and the spatial model. This result
verifies that the pairwise potentials capture useful spatio-temporal information
for recognizing video events. We have proposed a unified framework that builds
over low-level action primitives and mid-level actions to analyze high-level video
events. Intuitively, one can model spatio-temporal interactions among action
primitives to capture useful cues. The result shows that the unified framework
can be effective on a challenging dataset, and performs better than standard ap-
proaches using Action Bank-type representations and other structured models.

Visualizations of our results are shown in Fig. 5, which shows that our model
captures spatio-temporal interactions between action primitives to reason about
the event label. For example, in Fig. 5 (a), the nurse in red stood to push the
wheelchair when she saw the fallen person, and then walked out to call for help.
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Model: Action-ness DPM Ours
mAP (in%): 37.1 19.8 55.8

Table 2. Action localization performance on the UCF-Sports dataset. Action-ness
stands for the first baseline that runs on all the action bounding boxes, and DPM is
the second baseline that trains a DPM for each action class.

ecall

(a) horse riding (b) lifting (c) swing: high bar (d) swing: pommel horse

ecall recall

Fig. 6. Precision-recall curves of four sample action classes on the UCF-Sports dataset.
These action classes have obvious action sub-categories and thus benefit from our action
primitive based model.

Another man in a black shirt stayed right beside to help the fallen person by
performing a series of actions (bending-squatting-bending). These are obvious
cues for a fall scene. Moreover, in the scene of Fig. 5 (b), a nurse walked toward
the fallen person, and then bent to help. Note that the actions detected in the
before and after segments compensate for the noisy detections in the video frame,
and together are used to interpret this as a “fall” scene. In Fig. 5 (d), we correctly
recognize this non-fall scene although there is a false detection of a falling action.
This is because this scene has no spatio-temporal interactions between bending,
squatting and falling that are commonly seen in fall scenes.

5.2 Action Localization

Higher-level modeling of structured human activities is aided by accurate action
localization. In order to verify the performance of our action primitives, we use
them for action localization on the popular UCF-Sports dataset [38].

Dataset: The UCF-Sports dataset consists of 150 broadcast videos from 10
action classes ranging from diving, golf swinging, kicking, lifting, horse riding,
running, skating, swinging (on the pommel horse and on the floor), and swinging
(at the high bar), to walking. We follow the training/testing split proposed in [23]
and use 103 videos for training and 47 for test. We use the ground-truth bounding
annotations provided in the training data.

Baseline: We compare our action primitive based action localization model
with the following baselines. The first baseline is an “action-ness” detector
(c.f. [39]) that is simply a DPM trained on all bounding boxes without consider-
ing the action class. The second baseline executes a standard DPM detector for
each action class. As for our model, we follow the steps described in Section 3
to generate action primitives. After learning, an average of 4 action primitives
are discovered for each action class.
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Fig. 7. Sample visualization results of our localization model. Each row shows two
sample action primitives of an action class, e.g. lifting, swing: high bar, and swing;:
pommel horse (from top to down). For each action primitive, we visualize the learned
model on two sample video frames, where the highest responding detections are shown
in red rectangles. For comparison, we also plot the ground-truth bounding boxes in
blue rectangles.

For performance evaluation, we run each compared model on the test videos.
We assume that the action recognition is perfectly done so we use the corre-
sponding action detector for each action class, for the DPM model and ours.
We collect the detector responses on each frame, and measure the mean average
precision according to the PASCAL VOC criterion [40].

Results: The mAP results are reported in Table 2, which shows that our
model outperforms all the baselines. We have also selected sample action classes
and plotted the precision-recall curve in Fig. 6. These results again validate the
utility of action primitives in localizing actions. We visualize sample localization
results in Fig. 7. As can be seen, the action primitives are well-localized in many
instances. Detailed, accurate localization of this form can permit the type of
high-level activity reasoning that our full model can produce.

6 Conclusion

We presented an algorithm for learning a multi-level representation for the ac-
tions of people in a scene. In order to address the intra-class variation of an
action category, we developed a data-driven approach to discover action primi-
tives. These action primitives model specific appearance, viewpoint, and tempo-
ral stage variants of an action category. An algorithm for automatically discov-
ering these primitives from only action-level supervision was presented, based
on clustering and discriminative selection of primitives. A multi-level model for
the actions of people in a scene was built around these primitives, allowing us to
model detailed inter-relations among action primitives. Empirical results showed
that these primitives permit effective localization of actions, improved recogni-
tion of human actions, and a detailed explanation of human behaviour in an
entire scene-level event.
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